World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Record Mass Loss from Greenland's Best-observed Local Glacier : Volume 5, Issue 1 (04/02/2011)

By Mernild, S. H.

Click here to view

Book Id: WPLBN0004017086
Format Type: PDF Article :
File Size: Pages 17
Reproduction Date: 2015

Title: Record Mass Loss from Greenland's Best-observed Local Glacier : Volume 5, Issue 1 (04/02/2011)  
Author: Mernild, S. H.
Volume: Vol. 5, Issue 1
Language: English
Subject: Science, Cryosphere, Discussions
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Jakobsen, B. H., Lipscomb, W. H., Knudsen, N. T., Hasholt, B., Yde, J. C., Malmros, J. K., & Mernild, S. H. (2011). Record Mass Loss from Greenland's Best-observed Local Glacier : Volume 5, Issue 1 (04/02/2011). Retrieved from

Description: Climate, Ocean, and Sea Ice Modeling Group, Computational Physics and Methods, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA. Warming in the Arctic during the past several decades has caused glaciers to thin and retreat, resulting in increased freshwater runoff to the ocean. Local glaciers peripheral to the ice sheet are also retreating, but few mass-balance observations are available to quantify that retreat and determine the extent to which these glaciers are out of equilibrium with present-day climate. Here, we document record mass loss in 2009/2010 for the Mittivakkat Glacier (henceforth MG), the only local glacier in Greenland for which there exist long-term observations of both the surface mass balance and glacier front fluctuations. We attribute this mass loss to record high mean summer (June–August) and higher-than-average winter (September–May) temperatures and to lower-than-average winter precipitation. Also, we use the 15-year mass-balance record to estimate present-day and equilibrium accumulation-area ratios for the MG. We show that the glacier is significantly out of balance and will likely lose approximately 70% of its current area and 80% of its volume even in the absence of further climate changes. Temperature records from coastal stations in Southeast Greenland suggest that recent MG mass losses are not merely a local phenomenon, but are indicative of glacier changes in the broader region. Mass-balance observations for the MG therefore provide unique documentation of the general retreat of Southeast Greenland's local glaciers under ongoing climate warming.

Record mass loss from Greenland's best-observed local glacier

Allison, I., Bindoff, N. L., Bindschadler, R. A., Cox, P. M., de Noblet, N., England, M. H., Francis, J. E., Gruber, N., Haywood, A. M., Karoly, D. J., Kaser, G., Le Quéré, C., Lenton, T. M., Mann, M. E., McNeil, B. I., Pitman, A. J., Rahmstorf, S., Rignot, E., Schellnhuber, H. J., Schneider, S. H., Sherwood, S. C., Somerville, R. C. J., Steffen, K., Steig, E. J., Visbeck, M., and Weaver, A. J.: The Copenhagen Diagnosis: Updating the World on the Latest Climate Science, The University of New South Wales Climate Change Research Centre (CCRC), Sydney, Australia, 60 pp., 2009.; Bahr, D. B., Dyurgerov, M., and Meier, M. F.: Sea-level rise from glaciers and ice caps: A lower bound, Geophys. Res. Lett., 36, L03501, doi:10.1029/2008GL036309, 2009.; Box, J. E., Cappelen, J., Decker, D., Fettweis, X., Mote, T., Tedesco, M., and Van de Wal, R. S. W.: Greenland [in Arctic Report Card 2010],, 2010.; Brönnimann, S.: Early twentieth-century warming, Nat. Geosci., 2, 735–736, 2009.; Bøggild, C. E., Forsberg, R., and Reeh, N.: Melt water in a transect across the Greenland ice sheet, Ann. Glaciol., 40, 169–173, 2005.; Chylek, P., Folland, C., Lesins, G., and Dubey, M.: Twenties century bipolar seesaw of the Arctic and Antarctic surface air temperature, Geophys. Res. Lett., 37, L08703, doi:10.1029/2010GL042793, 2010.; Comiso, J.: Arctic warming signals from satellite observations, Weather, 61(3), 70–76, 2006.; Douville, H., Royer, J. F., and Mahfouf, J. F.: A new snow parameterization for the Me�te�o-France climate model, Part 1, Validation in stand-alone experiments, Clim. Dynam., 12(1), 21–35, 1995.; Dowdeswell, J. A.: A changing Greenland Ice Sheet and global sea-level rise, Science, 311, 963–964, 2006.; Dyurgerov, M., Meier, M. F., and Bahr, D. B.: A new index of glacier area change; a tool for glacier monitoring, J. Glaciology, 55(192), 710–716, 2009.; Dyurgerov, M., Bring, B. A., and Destouni, G.: Integrated assessment of changes in freshwater inflow to the Arctic Ocean, J. Geophys. Res., 115, D12116, doi:10.1029/2009JD013060, 2010.; Ettema, J., van den Broeke, M., van Meijgaard, E., van de Berg, M. J., Bamber, J. L., Box, J. E., and Bales, R. C.: Higher surface mass balance of the Greenland Ice Sheet revealed by high resolution climate modeling, Geophys. Res. Lett., 36, L12501, doi:10.1029/2009GL038110, 2009.; Hanna, E., Huybrechts, P., Steffen, K., Cappelen, J., Huff, R., Shuman, C., Irvine-Fynn, T., Wise, S., and Griffiths, M.: Increased runoff from melt from the Greenland Ice Sheet: a response to global warming, J. Climate, 21(2), 331–341, 2008.; IPCC: Climate Change, The physical Science Basis, Contributing of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp., 2007.; Knudsen, N. T. and Hasholt, B.: Radio-echo Sounding at the Mittivakkat Gletscher, Southeast Greenland, Arct. Antarct. Alp. Res., 31(3), 321–328, 1999.; Meier, M. F., Dyurgerov, M. B., Rick, U. K., O�Neel, S., Pfeffer, W. T., Anderson, R. S., Anderson, S. P., and Glazovsky, A .F.: Glaciers dominate eustatic sea-level rise in the 21st century, Science, 317, 1064–1067, doi:10.1126/science.1143906, 2007.; Mernild, S. H. and Hasholt, B.: Observed runoff, jökulhlaups, and suspended sediment load from the Greenland Ice Sheet at Kangerlussuaq, West Greenland, for 2007 and 2008, J. Glaciol., 55(193), 855–858


Click To View

Additional Books

  • Snow Cover Thickness Estimation by Using... (by )
  • Isotope Hydrological Studies on the Pere... (by )
  • Glacier Dynamics Over the Last Quarter o... (by )
  • The Effect of Snow/Sea Ice Type on the R... (by )
  • Influence of Meter-scale Wind-formed Fea... (by )
  • Antarctic Summer Sea Ice Concentration a... (by )
  • Arctic Ocean Sea Ice Snow Depth Evaluati... (by )
  • Effect of Higher-order Stress Gradients ... (by )
  • Measured and Modelled Sublimation on the... (by )
  • Stable Climate and Surface Mass Balance ... (by )
  • Quantifying Mass Balance Processes on th... (by )
  • Linking Catchment-scale Subglacial Disch... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from Nook eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.